If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2r^2+r-5=0
a = 2; b = 1; c = -5;
Δ = b2-4ac
Δ = 12-4·2·(-5)
Δ = 41
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{41}}{2*2}=\frac{-1-\sqrt{41}}{4} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{41}}{2*2}=\frac{-1+\sqrt{41}}{4} $
| 7x^2-20x+15=0 | | 6/24=0.75x | | 7x^2-2x+15=0 | | 5w^2-8w+3=0 | | 3/2=-7x+93x/3x | | 32=-7x+93x | | 2r^2-12r+12=-3 | | 5=n-0.001 | | -70.8+n=-79 | | u+2.45=4.24 | | 4=-5x+82x-6 | | 6x+9=111 | | 14t-6t-7t=1 | | 5x=6x-3x+20 | | 3c^2-4c-4=0 | | 5x-31=23-6 | | 1(2x+4)=11 | | u/6=-41 | | x/(3x-5)=4/x | | 189=71-u | | 0=(x^2+2x-600) | | 10+100(t)=10+70(t) | | 7x^2-20x-15=0 | | n-5/2=-3 | | x/3x-5=4/x | | 0=-4t2+32t | | 19=-1-2v | | 7/(6x-4)=9/(4x+6) | | -61.5+n=-62 | | 3(1-3x)=2(-4-7) | | 7/(6x-4=9/(4x-6) | | T(n)=4n-4 |